Spence-függvény

Matematikában, a Spence-függvény, vagy dilogaritmus, egy speciális függvény, mely a polilogaritmus egy speciális esete. Jelölése: Li2(z). A Lobacsevszkij-függvény, és a Clausen-függvény szorosan kapcsolódik a Spence-függvényhez. E két függvényt is, és magát a dilogaritmust is nevezik Spence-függvénynek:

Li 2 ( ± z ) = 0 z ln | 1 ζ | ζ d ζ = k = 1 ( ± z ) k k 2 ; {\displaystyle \operatorname {Li} _{2}(\pm z)=-\int _{0}^{z}{\ln |1\mp \zeta | \over \zeta }\,\mathrm {d} \zeta =\sum _{k=1}^{\infty }{(\pm z)^{k} \over k^{2}};}

A függvényt William Spence (1777 – 1815), skót matematikusról nevezték el.[1][2]

Kapcsolódó azonosságok

Li 2 ( z ) = Li 2 ( z 1 + z ) ln 2 ( 1 + z ) 2 {\displaystyle \operatorname {Li} _{2}(-z)=-\operatorname {Li} _{2}\left({\frac {z}{1+z}}\right)-{\frac {\ln ^{2}(1+z)}{2}}}
Li 2 ( i z ) = Li 2 ( z 2 ) 4 + i Li 2 ( z ) {\displaystyle \operatorname {Li} _{2}({\rm {i}}z)={\frac {\operatorname {Li} _{2}(-z^{2})}{4}}+{\rm {i}}\operatorname {Li} _{2}(z)}
Li 2 ( z ) + Li 2 ( z ) = 1 2 Li 2 ( z 2 ) {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(-z)={\frac {1}{2}}\operatorname {Li} _{2}(z^{2})}
Li 2 ( 1 z ) + Li 2 ( 1 1 z ) = ln 2 z 2 {\displaystyle \operatorname {Li} _{2}(1-z)+\operatorname {Li} _{2}\left(1-{\frac {1}{z}}\right)=-{\frac {\ln ^{2}z}{2}}}
Li 2 ( z ) + Li 2 ( 1 z ) = π 2 6 ln z ln ( 1 z ) {\displaystyle \operatorname {Li} _{2}(z)+\operatorname {Li} _{2}(1-z)={\frac {{\pi }^{2}}{6}}-\ln z\cdot \ln(1-z)}
Li 2 ( z ) Li 2 ( 1 z ) + 1 2 Li 2 ( 1 z 2 ) = π 2 12 ln z {\displaystyle \operatorname {Li} _{2}(-z)-\operatorname {Li} _{2}(1-z)+{\frac {1}{2}}\operatorname {Li} _{2}(1-z^{2})=-{\frac {{\pi }^{2}}{12}}-\ln z}
Li 2 ( 1 3 ) 1 6 Li 2 ( 1 9 ) = π 2 18 ln 2 3 {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{3}}\right)-{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}-\ln ^{2}3}
Li 2 ( 1 2 ) + 1 6 Li 2 ( 1 9 ) = π 2 18 ln 2 ln 3 ln 2 2 2 ln 2 3 3 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{2}}\right)+{\frac {1}{6}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}-\ln 2\cdot \ln 3-{\frac {\ln ^{2}2}{2}}-{\frac {\ln ^{2}3}{3}}}
Li 2 ( 1 4 ) + 1 3 Li 2 ( 1 9 ) = π 2 18 + 2 ln 2 ln 3 2 ln 2 2 2 3 ln 2 3 {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{4}}\right)+{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)={\frac {{\pi }^{2}}{18}}+2\ln 2\ln 3-2\ln ^{2}2-{\frac {2}{3}}\ln ^{2}3}
Li 2 ( 1 3 ) 1 3 Li 2 ( 1 9 ) = π 2 18 + 1 6 ln 2 3 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{3}}\right)-{\frac {1}{3}}\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {{\pi }^{2}}{18}}+{\frac {1}{6}}\ln ^{2}3}
Li 2 ( 1 8 ) + Li 2 ( 1 9 ) = 1 2 ln 2 9 8 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {1}{8}}\right)+\operatorname {Li} _{2}\left({\frac {1}{9}}\right)=-{\frac {1}{2}}\ln ^{2}{\frac {9}{8}}}
36 Li 2 ( 1 2 ) 36 Li 2 ( 1 4 ) 12 Li 2 ( 1 8 ) + 6 Li 2 ( 1 64 ) = π 2 {\displaystyle 36\operatorname {Li} _{2}\left({\frac {1}{2}}\right)-36\operatorname {Li} _{2}\left({\frac {1}{4}}\right)-12\operatorname {Li} _{2}\left({\frac {1}{8}}\right)+6\operatorname {Li} _{2}\left({\frac {1}{64}}\right)={\pi }^{2}}

Speciális értékek

Li 2 ( 1 ) = π 2 12 {\displaystyle \operatorname {Li} _{2}(-1)=-{\frac {{\pi }^{2}}{12}}}
Li 2 ( 0 ) = 0 {\displaystyle \operatorname {Li} _{2}(0)=0}
Li 2 ( 1 2 ) = π 2 12 ln 2 2 2 {\displaystyle \operatorname {Li} _{2}\left({\frac {1}{2}}\right)={\frac {{\pi }^{2}}{12}}-{\frac {\ln ^{2}2}{2}}}
Li 2 ( 1 ) = π 2 6 {\displaystyle \operatorname {Li} _{2}(1)={\frac {{\pi }^{2}}{6}}}
Li 2 ( 2 ) = π 2 4 {\displaystyle \operatorname {Li} _{2}(2)={\frac {{\pi }^{2}}{4}}}
Li 2 ( 5 1 2 ) = π 2 10 ln 2 5 1 2 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}-1}{2}}\right)=-{\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}

= π 2 10 arcsch 2 2 {\displaystyle =-{\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}

Li 2 ( 5 + 1 2 ) = π 2 15 + 1 2 ln 2 5 1 2 {\displaystyle \operatorname {Li} _{2}\left(-{\frac {{\sqrt {5}}+1}{2}}\right)=-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}

= π 2 15 + 1 2 arcsch 2 2 {\displaystyle =-{\frac {{\pi }^{2}}{15}}+{\frac {1}{2}}\operatorname {arcsch} ^{2}2}

Li 2 ( 3 + 5 2 ) = π 2 15 1 2 ln 2 5 1 2 {\displaystyle \operatorname {Li} _{2}\left({\frac {3+{\sqrt {5}}}{2}}\right)={\frac {{\pi }^{2}}{15}}-{\frac {1}{2}}\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}
= π 2 15 1 2 arcsch 2 2 {\displaystyle ={\frac {{\pi }^{2}}{15}}-{\frac {1}{2}}\operatorname {arcsch} ^{2}2}
Li 2 ( 5 + 1 2 ) = π 2 10 ln 2 5 1 2 {\displaystyle \operatorname {Li} _{2}\left({\frac {{\sqrt {5}}+1}{2}}\right)={\frac {{\pi }^{2}}{10}}-\ln ^{2}{\frac {{\sqrt {5}}-1}{2}}}

= π 2 10 arcsch 2 2 {\displaystyle ={\frac {{\pi }^{2}}{10}}-\operatorname {arcsch} ^{2}2}

Jegyzetek

  1. Archivált másolat. [2019. október 28-i dátummal az eredetiből archiválva]. (Hozzáférés: 2012. április 22.)
  2. http://www.biographi.ca/009004-119.01-e.php?BioId=37522

Források

  • Lewin, L: Dilogarithms and associated functions. 1958.  
  • Morris, Robert: "The dilogarithm function of a real argument". (hely nélkül): Math. Comp. 33. 1979. 778–787. o.  
  • Kirillov, Anatol N: Dilogarithm identities. 1994.  

Kapcsolódó szócikkek

  • http://maths.dur.ac.uk/~dma0hg/dilog.pdf
  • http://mathworld.wolfram.com/Dilogarithm.html
  • Lobacsevszkij-függvény
  • Clausen-függvény
  • Polilogaritmus