Acetyltransferase

Chemical structure of an acetyl group bound to the remainder R of a molecule.

Acetyltransferase (or transacetylase) is a type of transferase enzyme that transfers an acetyl group, through a process called acetylation. Acetylation serves as a modification that can profoundly transform the functionality of a protein by modifying various properties like hydrophobicity, solubility, and surface attributes.[1] These alterations have the potential to influence the protein's conformation and its interactions with substrates, cofactors, and other macromolecules.[1] The image to the right shows the basic structure of an acetyl group, where R is a variable indicates the remainder of the molecule to which the acetyl group is attached.

Table 1: Classification of acetyltransferases in human
Acetyltransferases Substrate Gene Chromosome Location Gene Group Abbreviation
Histone Acetyltransferase Lysine residues on histones[1] HAT1[2] 2q31.1[2] Lysine acetyltransferases[2] HAT
Choline Acetyltransferase Choline[3] CHAT[4] 10q11.23[4] NA ChAT[3]
Serotonin N-Acetyltransferase Serotonin AANAT[5] 17q25.1[5] GCN5 Related N-Acetyltransferases[5] AANAT[5]
NatA Acetyltransferase N-terminus of various proteins as they emerge from the ribosome NAA15[6] 4q31.1[6] Armadillo like helical domain containing

N-alpha-acetyltransferase subunits[6]

NatA[6]
NatB Acetyltransferase Peptides starting with Met-Asp/Glu/Asn/Gln[7] NAA25[8] 12q24.13[8] N-alpha-acetyltransferase subunits

MicroRNA protein coding host genes[8]

NatB[8]

Structure

  • 3D structure of histone acetyltransferase
    3D structure of histone acetyltransferase
  • 3D Structure of choline acetyltransferase
    3D Structure of choline acetyltransferase
  • 3D structure of serotonin N-acetyltransferase
    3D structure of serotonin N-acetyltransferase

The 3D structure predictions of histone, choline, and serotonin acetyltransferases are shown to the side of this page. The 3D structure of these proteins are essential for interactions between them and their substrates. Alterations to the 3D structures of these enzymes could result in the chemical modifications not being completed.

Additional examples include:

  • Chloramphenicol acetyltransferase

See also

  • Acyltransferase
  • Acetylation

References

  1. ^ a b c Marmorstein R, Zhou MM (July 2014). "Writers and readers of histone acetylation: structure, mechanism, and inhibition". Cold Spring Harbor Perspectives in Biology. 6 (7): a018762. doi:10.1101/cshperspect.a018762. PMC 4067988. PMID 24984779.
  2. ^ a b c Verreault A, Kaufman PD, Kobayashi R, Stillman B (January 1998). "Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase". Current Biology. 8 (2): 96–108. doi:10.1016/s0960-9822(98)70040-5. PMID 9427644. S2CID 201273.
  3. ^ a b Kim AR, Rylett RJ, Shilton BH (December 2006). "Substrate binding and catalytic mechanism of human choline acetyltransferase". Biochemistry. 45 (49): 14621–14631. doi:10.1021/bi061536l. PMID 17144655.
  4. ^ a b Strauss WL, Kemper RR, Jayakar P, Kong CF, Hersh LB, Hilt DC, Rabin M (February 1991). "Human choline acetyltransferase gene maps to region 10q11-q22.2 by in situ hybridization". Genomics. 9 (2): 396–398. doi:10.1016/0888-7543(91)90273-H. PMID 1840566.
  5. ^ a b c d Coon SL, Mazuruk K, Bernard M, Roseboom PH, Klein DC, Rodriguez IR (May 1996). "The human serotonin N-acetyltransferase (EC 2.3.1.87) gene (AANAT): structure, chromosomal localization, and tissue expression". Genomics. 34 (1): 76–84. doi:10.1006/geno.1996.0243. PMID 8661026.
  6. ^ a b c d Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, et al. (May 2009). "Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans". Proceedings of the National Academy of Sciences of the United States of America. 106 (20): 8157–8162. Bibcode:2009PNAS..106.8157A. doi:10.1073/pnas.0901931106. PMC 2688859. PMID 19420222.
  7. ^ Hong H, Cai Y, Zhang S, Ding H, Wang H, Han A (April 2017). "Molecular Basis of Substrate Specific Acetylation by N-Terminal Acetyltransferase NatB". Structure. 25 (4): 641–649.e3. doi:10.1016/j.str.2017.03.003. PMID 28380339.
  8. ^ a b c d Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, et al. (July 2012). "N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB". Proceedings of the National Academy of Sciences of the United States of America. 109 (31): 12449–12454. Bibcode:2012PNAS..10912449V. doi:10.1073/pnas.1210303109. PMC 3412031. PMID 22814378.

External links

  • Acetyltransferases at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • v
  • t
  • e
Transferases: acyltransferases (EC 2.3)
2.3.1: other than amino-acyl groups
  • acetyltransferases: Acetyl-Coenzyme A acetyltransferase
  • N-Acetylglutamate synthase
  • Choline acetyltransferase
  • Dihydrolipoyl transacetylase
  • Acetyl-CoA C-acyltransferase
  • Beta-galactoside transacetylase
  • Chloramphenicol acetyltransferase
  • N-acetyltransferase
  • Histone acetyltransferase
2.3.2: Aminoacyltransferases2.3.3: converted into alkyl on transfer
Stub icon

This enzyme-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e